Steady-state limiting currents at finite conical microelectrodes.

نویسندگان

  • Cynthia G Zoski
  • Michael V Mirkin
چکیده

The investigation of steady-state diffusion-limiting currents at finite conical microelectrodes is reported. Such electrodes are of particular interest as probes in studies of kinetic reactions, measurements in microenvironments, and high-resolution electrochemical imaging. The diffusion-limiting currents were calculated using numerical (finite element) analysis and compared to those obtained at inlaid disk and hemispheroidal microelectrodes. Time-dependent simulations demonstrating the approach of the diffusion current to a steady-state value are also reported. The steady-state diffusion-limiting currents obtained were found to be a strong function of the electrode geometry, including the aspect ratio of the cone and the thickness of the insulating sheath. Thus, simple, approximate analytical expressions which account for these geometrical dependencies in the simulated steady-state diffusion-limited currents are also reported. As a limiting case, an analytical approximation was obtained for the steady-state current to a microdisk as a function of the insulator thickness. The use of these approximate equations in calculating electrode radii from steady-state diffusion-limiting currents is demonstrated, and good agreement was found with previously reported experimental studies. Use of the frequently implemented hemispherical theory to analyze steady-state diffusion-limiting currents obtained with finite conical microelectrodes is shown to result in an experimentally acceptable underestimation of the electrode radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-area interdigitated array microelectrodes for electrochemical sensing

Advanced photolithography developed for the semiconductor industry has been used to fabricate interdigitated microelectrode arrays that pass steady-state limiting currents of up to 230 nArmM analyte — 2.5 times more than the most sensitive interdigitated array built to date, and exhibit response times of ;5 ms. This performance results from the small interelectrode gap and the large active area...

متن کامل

Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dep...

متن کامل

Adaptive finite element methods in electrochemistry.

In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity a...

متن کامل

Determination of heterogeneous electron transfer rate constants at microfabricated iridium electrodes

There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evaporated or dc magnetron sputtered surface, have not previously been performed. This paper compares the results of these mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 74 9  شماره 

صفحات  -

تاریخ انتشار 2002